AVALIAÇÃO DO pH DO FLUÍDO RUMINAL EM OVINOS SUBMETIDOS À MUDANÇA DE DIETA

SILVEIRA, Pedro Augusto Silva¹; SCHWEGLER, Elizabeth²; HAAS, Rodrigo Reichert¹; THEOBALD, Fabrício¹; GIORDANI, Claudia¹; SCHIAVON, Raquel Schiavon¹; MADEIRA, Elisângela Mirapalheta³; RABASSA, Viviane Rohrig²; GIL-TURNES, Carlos⁴; CORRÊA, Marcio Nunes⁴

¹Graduando em Medicina Veterinária – Fac. Veterinária – UFPel ²Médico Veterinário, MsC., Doutorando Veterinária – UFPel ³Médico Veterinário, MsC., Mestrando em Veterinária – UFPel ⁴Médico Veterinário, MsC., Dr., Prof. Adjunto Fac. Veterinária – UFPel

Universidade Federal de Pelotas Núcleo de Pesquisa, Ensino e Extensão em Pecuária (NUPEEC) Campus Universitário – 96010 900 - Pelotas/RS - www.ufpel.edu.br/nupeec E-mail: nupeec@gmail.com - 0XX (53) 3275 7188

1. Introdução

Em épocas de escassez de alimentos, é necessária a utilização de estratégias nutricionais, como a utilização de forragens conservadas e adição de concentrado à dieta, que atendam as exigências nutricionais dos animais, mantendo o desempenho produtivo. Neste sentido o feno de alfafa constitui-se como uma importante fonte energética e, principalmente, protéica para a nutrição dos ovinos, contendo em média 90% de matéria-seca, 16% de proteína bruta e 4117 kcal/kg de energia bruta (PERALI *et al.*, 2001).

Porém, as condições do ambiente ruminal devem ser mantidas dentro de certos limites, para que o crescimento e metabolismo microbiano sejam normais. A faixa de pH para que haja atividade microbiana normal no rúmen é de 6,7 ± 0,5 (VAN SOEST, 1994). Animais que recebem uma alta concentração protéica na dieta, como no caso do uso exagerado do feno de alfafa tendem a apresentar um pH ruminal acima do fisiológico, devido a maior formação de amônia no rúmen. Dessa forma, além da função digestiva do rúmen ficar prejudicada, há um desperdício de proteína que não consegue ser aproveitada pelo animal, aumentando o custo da alimentação e poluindo o meio ambiente (SILVA et al., 2002).

A disponibilidade energética é apontada como fator limitante para o crescimento microbiano, podendo a manipulação da dieta, por meio da alteração nas proporções de volumoso e concentrado, aumentar a quantidade de matéria orgânica fermentada e, conseqüentemente, a síntese protéica (POPPI & McLLENAN, 1995). Porém a inclusão de concentrado na dieta deve ser feita de forma gradual para que o ambiente ruminal não sofra alterações bruscas de pH, que tende a cair com a inclusão de concentrado. Segundo Brown et al. (2006), um período de adaptação menor que 14 dias pode causar problemas digestivos aos animais.

Em meio a isso, o objetivo deste trabalho foi avaliar o pH do fluido ruminal de ovinos adaptados à alimentação com feno de alfafa após à inclusão de concentrado na dieta.

2. Metodologia

O experimento foi realizado no Hospital de Clínicas Veterinária da Universidade Federal de Pelotas – Brasil. Foram utilizadas 4 ovinos sem raça definida (SRD), com idade média de 10 meses (± 30 dias), pesando aproximadamente 30 ± 5 kg, dos quais três apresentavam escore de condição corporal 2,5 e o outro 3 (escala de 1 a 5). Os animais permaneciam confinados numa baia com dimensões 3,0 x 3,5, com acesso livre a água. A alimentação era feita diariamente as 8:30 h e as 16:30 h, com dieta a base de feno de alfafa. Nos dias 1, 2, 5, 8, 11, 14 e 17 do experimento foram realizadas 4 coletas de líquido ruminal de cada animal, respectivamente as 8:00, 12:00, 14:00 e 16:00 h, quando foi aferido o pH através de um potenciômetro portátil (Phtek®). No dia 2 cada animal recebeu 200 gramas de concentrado (Irgovino Premium® IRGOVEL - Indústria Riograndense de Óleos Vegetais Ltda., Brasil) (fibra bruta 13,9%, extrato etéreo 5,68%, proteína bruta 14,8%) por turno, totalizando 400 gramas de concentrado/animal/dia. No dia 5 a quantidade de concentrado fornecida foi aumentada para 450 gramas por turno, o que significa o fornecimento de 900 gramas de concentrado/animal/dia.

O limite fisiológico de pH ruminal para os animais foi considerado no intervalo compreendido entre 6,2 e 7,2 (RADOSTITS *et al.*, 2002).

3. Resultados e Discussão

Na tabela 1 são mostradas as médias de pH de todos os animais em relação ao dia e ao horário da coleta.

Tabela 1: Medias de pri nos dias e noranos das coletas					
	8 h	12 h	14 h	16 h	Média
Dia 1	8,2	7,9	7,8	8,1	8,0
Dia 2	8,4	8,0	7,9	7,8	8,0
Dia 5	8,0	6,0	6,2	6,4	6,6
Dia 8	6,9	6,5	6,5	6,5	6,6
Dia 11	7,0	6,3	6,4	6,5	6,5
Dia 14	6,9	6,4	6,5	6,5	6,6
Dia 17	6,6	6,3	6,3	6,5	6,4
Média	7,4	6,8	6,8	6,9	7,0

Tabela 1. Médias de pH nos dias e horários das coletas.

Conforme é mostrado na tabela acima, no dia 1, enquanto a dieta era composta apenas por feno de alfafa, e também após a adição de 400 gramas de concentrado/animal/dia, o pH do fluido ruminal apresentava-se aumentado em relação ao fisiológico, com valor médio diário de 8,0. Com a adição de 900 gramas de concentrado/animal/dia, a partir do dia 5, os valores de pH estabilizaram-se dentro dos limites fisiológicos até o dia 17.

A digestão e o aproveitamento da proteína que é degradada no rúmen estão atrelados ao fornecimento de carboidratos na ração, como fonte energética para que a microbiota ruminal utilize o nitrogênio da dieta na síntese de proteína microbiana (POPPI & McLLENAN, 1995). Neste caso, provavelmente, havia um déficit no fornecimento de energia aos animais, que

foi corrigido com a adição de concentrado à dieta, após o dia 5. Além disto, o desequilíbrio entre energia e proteína leva a um excedente de amônia no rúmen que é absorvida pela parede ruminal, transformando-se em uréia no fígado com consumo de energia do animal. Esta uréia pode voltar ao rúmen e servir como fonte de nitrogênio aos microorganismos, ou ser eliminada pela urina (SILVA et al., 2002).

5. Referências Bibliográficas

BROWN, M. S.; PONCE, C. H.; PULIKANTI, R. Adaptation of beef cattle to high-concentrate diets: Performance and ruminal metabolism. 2006. J. Anim. Sci. 84:E25-E33, 2006.

PERALI, C.; LIMA, J.A.F.; FIALHO, E.T. Valores nutricionais de alimentos para equinos. **Ciências e Agrotecnologia**, v.25, p.1216-1224, 2001.

POPPI, D.P.; McLLENAN, S.R. Protein and energy utilization by ruminants at pasture. **Journal of Animal Science**. Champaign, v. 73, p. 278-290, 1995.

RADOSTITS, O. M.; GAY, C. C.; BLOOD, D. C.; HINCHCLIFF, K. W. **Clínica Veterinária**: Um tratado de Doenças de Bovinos, Ovinos, Suínos Caprinos e Egüinos. 9 ed. Rio de Janeiro: Guanabara Koogan, p.157- 262, 2002.

SILVA, F.F.; VALADARES FILHO, S.C.; İTAVO, L.C.V. Consumo, desempenho, característica de carcaça e biometria do trato gastrintestinal e dos órgãos internos de novilhos Nelore recebendo dietas com diferentes níveis de concentrado e proteína. **Revista Brasileira de Zootecnia**, v.31, n.4, p.1849-1864, 2002.

Van SOEST, P.J. **Nutritional ecology of the ruminant**. 2.ed. Ithaca: Cornell,. 476p1994.