

DETERMINAÇÃO DAS PROPRIEDADES FÍSICAS E MECÂNICAS DA MADEIRA DE Prunus sellowii Koehne ORIUNDA DE FLORESTA NATIVA

<u>CADEMARTORI, Pedro Henrique G. de</u>¹; GATTO, Darci Alberto²; ARALDI, Dane Block³; STANGERLIN, Diego Martins⁴; MELO, Rafael Rodolfo de⁴; BELTRAME, Rafael⁴

¹Aluno de Graduação em Eng. Industrial Madeireira, FEA-UFPel. pcademartori.fea@ufpel.tche.br ²Orientador, Professor Adjunto do Curso de Engenharia Industrial Madeireira, DEA-UFPel ³Doutorando em Engenharia Florestal, CCR-UFSM ⁴Mestrando em Engenharia Florestal, CCR-UFSM

1. INTRODUÇÃO

Natural da família Rosaceae, *Prunus sellowii* Koehne é conhecido popularmente como pessegueiro-bravo, tem predominância nos estados brasileiros do Rio Grande do Sul, Minas Gerais, Rio de Janeiro e Mato Grosso do Sul, habitando, principalmente, Floresta Ombrófila Densa, Floresta Ombrófila Mista e Floresta Estacional Semidecidual (LORENZI, 2000). Segundo Reitz et al. (1989), também ocorre no Paraguai e Argentina. Essa espécie é caracterizada como promissora para utilização em reflorestamentos e recuperação de ecossistemas degradados (CARVALHO, 1994). Todavia, a madeira de *Prunus sellowii* Koehne pode ser utilizada para acabamentos internos, artigos de esporte, cabos de ferramentas, folhas faqueadas decorativas, móveis, lambris, peças torneadas, tacos e tábuas para assoalhos, desde que definida suas propriedades tecnológicas (MAINIERI e CHIMELO, 1989).

Entretanto, devido à heterogeneidade da madeira, é importante a ampliação dos estudos das propriedades físicas e mecânicas para fins de caracterização das amostras, tais como retratibilidade, compressão axial, flexão estática, flexão dinâmica e cisalhamento. Rocha (1994) afirma que a heterogeneidade da madeira relaciona-se a diversos fatores como aspectos climáticos, solo, local de crescimento e de ordem genética. É importante ressaltar que, mesmo procedente da mesma árvore, a madeira pode apresentar características heterogêneas em diferentes amostras, já que estão sujeitas a aspectos anatômicos e de crescimento.

Dessa forma, o conhecimento das propriedades físicas e mecânicas da madeira é fundamental para o aprofundamento dos estudos em relação à qualidade e tecnologia da madeira.

Nesse contexto, com o intuito de agregar valores à comunidade científica, o presente trabalho tem o objetivo de determinar as propriedades físicas e mecânicas da madeira de *Prunus sellowii* Koehne oriunda de floresta nativa.

2. MATERIAL E MÉTODOS

Para a realização desse trabalho foram eleitas, abatidas e desdobradas três árvores de *Prunus sellowii* Koehne (Pessegueiro-bravo) provenientes do Estado do Rio Grande do Sul. Para tanto, utilizou-se as normas MB-26, ABTN (1949) e os critérios adotados por Brottero (1956) e Silva (1967) para o estudo das características físicas e mecânicas dos ensaios da madeira de *Prunus sellowii*.

As características físicas analisadas foram: massa específica aparente a 15 % de umidade e retratibilidade (quanto às contrações e ao coeficiente de retratibilidade). Já para a definição das características mecânicas da espécie foram realizados os seguintes ensaios: compressão axial, flexão estática, flexão dinâmica, cisalhamento, dureza janka, tração normal às fibras e fendilhamento.

Para a definição da massa específica aparente, determinou-se o peso de cada corpo-de-prova, com a aproximação de 0,01 g e, a seguir, o volume do mesmo com precisão de 0,01 cm³. O volume dos corpos-de-prova foi determinado pelo volumenômetro de BREUIL. Os valores obtidos da massa específica aparente foram corrigidos para 15% de umidade.

Quanto ao módulo de elasticidade à compressão, foram ensaiados 12 corposde-prova com 6 x 6 x 18 cm. Foram fixados dois deflectômetros sob duas faces que permitem medir as deformações com precisão de 0,01 mm. Já no módulo de elasticidade à flexão estática, utilizaram-se amostras de madeira verde (6 x 6 x 100 cm). Na determinação da flexão dinâmica utilizaram-se 24 amostras, secas ao ar, com 2 x 2 x 30 cm. O instrumento utilizado para a determinação da propriedade foi o pêndulo de CHARPY. Para a determinação da dureza janka foram realizados ensaios com duas séries, para madeira verde e madeira seca ao ar, cada uma com 12 amostras de 6 x 6 x 15 cm. O resultado foi obtido com a verificação do esforço, em Kgf necessário para introduzir uma semi-esfera de aço com 1 cm² de secção diametral, em cada topo dos corpos-de-prova. O cisalhamento foi obtido com a divisão da carga de ruptura pela secção de 25 cm. O número de amostras utilizadas foi de 24 secas ao ar e 24 verdes, com 5 x 5 x 5 cm.

Na tração normal às fibras, foram utilizados 48 corpos-de-prova (24 secos e 24 verdes), com 7,5 x 4,8 x 2,0m. Por fim, o fendilhamento foi obtido dividindo-se a carga de ruptura pela secção de 4 cm², igualmente a compressão. Utilizaram-se 80 amostras (40 secas ao ar e 40 verdes), com 2 x 2 x 7cm.

3. RESULTADOS E DISCUSSÃO

Os resultados observados para os ensaios físico-mecânicos da madeira de *Prunus sellowi*, bem como a comparação com a literatura consultada estão apresentados na Tabela 1 e Tabela 2.

Entre as propriedades físicas, destacou-se a diferença observada na massa específica aparente a 15% de umidade. O resultado observado foi 0,80 g/cm³, diferentemente do que consta na literatura consultada. Todavia, ficando na faixa de 0,69 g/cm³ a 0,92 g/cm³ valores mínimos e máximos encontrados na literatura. Já, para a retratibilidade observaram-se valores inferiores ao consultado na literatura, exceto nas contrações tangencial e volumétrica.

Tabela 1 - Propriedades físicas da madeira de *Prunus sellowii* Koehne.

Ensaios	Observado	Literatura'

Massa específica aparente (a	15% de umidade)	0,80 g/cm ³	0,92 g/cm ³
	Retratibilidade		
	Radial	3,86	4,3
Contrações em %	Tangencial	14,74	10,6
	Volumétrica	21,07	16,5
Coeficiente de retrat	ibilidade	0,55	0,64

¹ Mainieri e Chimelo (1989)

Da mesma forma, as propriedades mecânicas também apresentaram divergências quanto à literatura consultada. A flexão estática apresentou valores inferiores, em madeira verde e seca, ao constatado por MAINIERI e CHIMELO (1989). No entanto, observou-se um valor superior na propriedade de relação 1/f. As demais propriedades mecânicas observadas, como cisalhamento e fendilhamento foram inferiores a literatura consultada, como ocorrido nas propriedades físicas. É relevante constatar que as diferenças encontradas nas propriedades analisadas são conseqüências de diversos fatores ligados ao crescimento das árvores, tais como solo e clima.

Tabela 2 - Propriedades mecânicas da madeira de Prunus sellowii Koehne.

Ensaios		Observado	Literatura ¹	
Compressão axial				
Coeficiente de influência da umidade (Kgf/cm²)		17,0	_*	
Limite de resistência Kg/cm²	verde	358	574	
	seco	548	735	
Coeficiente de qualidade a 15%		7,1	8,0	
Flexão estática				
Limite de resistência Kgf/cm²	verde	809	1.252	
	seco	1.128	1.700	
Relação 1/f		28,0	22	
Módulo de elasticidade Kgf/cm² - (madeira verde)				
Compressão	Módulo	112.200	162.900	
	Limite de	236	351	
proporcionalidade				
Flexão	Módulo	116.633	142.000	
	Limite de	361	551	
	proporcionalidade			
Flexão dinâmica (madeira seca ao ar)				
Trabalho absorvido (Kgf.m)		3,3	5,64	
Coeficiente de resiliência (R)		0,44	0,89	
Cota dinâmica R/D²		0,88	1,05	
Cisalhamento (Kgf/cm²)		111	142	
Dureza Janka (Kg		579	867	
Tração normal às fibras (Kgf/cm²)		75	129	
Fendilhamento (Kg	ıf/cm²)	10	12,4	

Mainieri e Chimelo (1989);

^{*}Unidade apresentada pela literatura (%) da propriedade em questão é diferente da utilizada no experimento;

4. CONCLUSÕES

Com base nos resultados obtidos e, posteriormente, comparados pode-se concluir que: as propriedades físicas e mecânicas foram inferiores aos apresentados na literatura consultada, com exceção da retratibilidade (contrações tangencial e volumétrica) e da relação 1/f que apresentaram resultados superiores.

5. REFERÊNCIAS BIBLIOGRÁFICAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **Projeto de Tecnologia das Madeiras Brasileiras.** Rio de Janeiro, 1949. 53p.

BROTTERO, F.A. **Métodos de Ensaios adotados no IPT para o estudo de Madeiras Nacionais.** Instituto de Pesquisas Tecnológicas, São Paulo, 1956. 20p.

CARVALHO, P.E.R. **Espécies florestais brasileiras**: recomendações silviculturais, potencialidades e uso da madeira. Colombo: EMBRAPA Florestas, 1994. 639p.

LOPES, G.A.; GARCIA, J.N. Densidade básica e umidade natural da madeira de *Eucalyptus saligna* Smith, de Itatinga, associadas aos padrões de casca apresentados pela população. **Scientia Forestalis**, Piracicaba, n. 62, p. 13-23, 2002.

LORENZI, H. Árvores brasileiras: manual de identificação e cultivo de plantas arbóreas nativas do Brasil. Nova Odessa: Plantarum, 2000. v.1, 352p.

MAINIERI, C.; CHIMELO, J.P. Fichas de Características das madeiras brasileiras. 2 ed. São Paulo, IPT, 1989. (IPT n. 1791).

MARCHIORI, J.N.C. **Dendrologia das angiospermas**: das bixáceas às rosáceas. Santa Maria: Ed. UFSM, p. 211-212, 2000.

NAHUZ, M.A.R. Some aspects of the introduction of lesser-known Brazilian species to the European timber market. Thesis (Magister) -, Department of Forestry and Wood Science, University College of North Wales, Bangor, 1974.

REITZ, P.; KLEIN, R.M.; REIS, A. **Projeto madeira do Rio Grande do Sul**. Porto Alegre : Sudesul/HBR, 1988. 528p.

RICHTER, H.G.; BURGER, L.M. **Anatomia da Madeira**. 2. ed. Curitiba: Universidade Federal do Paraná, 1978. 78 p.

ROCHA, J.S. A segurança de estruturas de madeira determinada a partir da variabilidade da densidade básica e de propriedades mecânicas de madeiras amazônicas. 160 f. Dissertação (Mestrado) — Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, 1994.